
EXPLICIT STILLMAN BOUNDS FOR ALL DEGREES

GIULIO CAVIGLIA AND YIHUI LIANG

Abstract. In 2016 Ananyan and Hochster proved Stillman’s conjecture by showing the ex-
istence of a uniform upper bound for the projective dimension of all homogeneous ideals, in
polynomial rings over a field, generated by n forms of degree at most d. Explicit values of the
bounds for forms of degrees 5 and higher are not yet known.

The main result of this article is the construction of explicit such bounds, for all degrees d,
which behave like power towers of height 1

6d
3 + 11

6 d − 4. A key technical step is to establish
a bound D(k, d), which controls the number of generators of a minimal prime over an ideal
of a regular sequence of k or fewer forms of degree d, and supplementing it into Ananyan and
Hochster’s proof in order to obtain a recurrence relation.

1. Introduction

Let K be a field, R = K[x1, . . . , xN ] be a polynomial ring over K, and I be an ideal of R
generated by n forms of degrees d1, . . . , dn. We will denote the projective dimension of a module
over R by pdR(M). Stillman (see [21]) conjectured that the projective dimension of I can be
bounded in terms of n and d1, . . . , dn but independent of N . We will refer to such bounds
as Stillman bounds. Ananyan and Hochster were the first to give an affirmative answer to
Stillman’s conjecture in [2], where they showed the existence of Stillman bounds by proving the
existence of small subalgebras and small subalgebra bounds ηB (defined in [2, Theorem B] or
Theorem 2.2). Stillman’s conjecture was later reproved in [11] and [17], both using topological
Noetherianity results from [12].

With the existence proven, the next question is to find explicit Stillman bounds. While
many early and recent works [1] [3] [4] [5] [8] [16] [15] [18] [19] [20] have established Stillman
bounds for degree 4 or less, the question for degree 5 and higher remains untouched. We give
explicit Stillman bounds for all degrees by proving explicit small subalgebra bounds ηB through
a recurrence relation in Theorem 3.6. In particular the Stillman bound we obtain is estimated
to be a power tower as follows:

Theorem 4.3. If I is a homogeneous ideal in a polynomial ring R generated by n forms with
maximum degree d ≥ 4, then pdR(R/I) can be bounded by a power tower with base 7, height
1
6
d3 + 11

6
d− 4, and top exponent d+ n+ 3.

The main reason why Ananyan-Hochster’s inductive proof does not produce explicit Stillman
bounds is that the authors can only show the existence (see [2, §3]) of a bound called D(k, d),
which controls the number of generators of a minimal prime over an ideal of a regular sequence
of k or fewer polynomials with degree d.

The crucial technical result of this article is the following lemma which establish an effective
value for D(k, d).
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Lemma 3.3. Let K be an algebraically closed field, P ⊂ K[x1, . . . , xN ] be a minimal prime
of an ideal generated by a regular sequence of k or fewer forms of degree at most d. Then the
minimal number of generators of P is bounded by

D(k, d) = (2d)2
1B(k,d)−1

.

By inserting the above bound D(k, d) into the double-layered induction of [2], we obtain a
bound for ηB and thus our Stillman bounds. Notice that in the above lemma, the assumption
of the field being algebraically closed is needed only for existence of 1B(k, d) as in [2, Theorem

B], and the proof still works if we drop this assumption and replace 1B(k, d) by pdR(R/P ) or
N (see Theorem 3.5).

The paper is organized as follows. In Section 2, we first state the small subalgebra theorems
of [2] after giving their necessary definitions, then set up notations needed for the next section.
In Section 3, we construct the bound D(k, d), discuss how we insert the bound D(k, d) into
Ananyan and Hochster’s proof, and conclude the section with a theorem establishing our bounds
for ηB with a recurrence relation. In Section 3, we give an estimate of our bounds for ηB.

2. Notation

We first recall some definitions in [2, §1] which are needed for stating the theorems in [2]. Let
R = K[x1, . . . , xN ] be a polynomial ring over a field K. Let V be a finite dimensional graded
vector space of R, then we say V has dimension sequence δ = (δ1, . . . , δd) if V = V1 ⊕ · · · ⊕ Vd
as a direct sum of its graded components with dimK Vi = δi.

A function of several variables is called ascending if it is increasing in any one variable while
the other variables are fixed.

A form F ∈ R has a k-collapse if it can be written as a graded combination of k or fewer
forms of strictly smaller positive degree. We say F has strength k if it has a k + 1-collapse but
no k-collapse. By convention we set the strength of a linear form to be +∞.

A sequence of elements G1, . . . , Gs in a Noetherian ring R is a prime sequence (respectively,
an Rη-sequence) if for 0 ≤ i ≤ s, R/(G1, . . . , Gi) is a domain (respectively, satisfies the Serre
condition Rη). When R is a polynomial ring, for any η ≥ 1 an Rη-sequence is a prime sequence
and hence a regular sequence.

Our goal is to give explicit bounds to the functions ηA and ηB for any degree, which are
defined in Theorem A, Theorem B, and Corollary B of [2].

Theorem 2.1 (Ananyan-Hochster [2]). There are ascending functions A = (A1, . . . , Ad) and,
for every integer η ≥ 1, ηA = (ηA1, . . . ,

ηAd) from dimension sequences δ = (δ1, . . . , δd) ∈ Nd to
Nd with the following property: For every algebraically closed field K and every positive integer
N , if R = K[x1, . . . , xN ] is a polynomial ring, and V denotes a graded K-vector subspace of
R of vector space dimension n with dimension sequence (δ1, . . . , δd), such that for 1 ≤ i ≤ d,
the strength of every nonzero element of Vi is at least Ai(δ) (respectively, ηAi(δ)), then every
sequence of K-linearly independent forms in V is a regular sequence (respectively, is an Rη-
sequence).

Theorem 2.2 (Ananyan-Hochster [2]). There is an ascending function B from dimension
sequences δ = (δ1, . . . , δd) to Z+ with the following property. If K is an algebraically closed
field and V is a finite-dimensional Z+-graded K-vector subspace of a polynomial ring R over
K with dimension sequence δ, then V (and, hence, the K-subalgebra of R generated by V ) is
contained in a K-subalgebra of R generated by a regular sequence G1, . . . , Gs of forms of degree
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at most d, where s ≤ B(δ). Moreover, for every η ≥ 1 there is such a function ηB with the
additional property that every sequence consisting of linearly independent homogeneous linear
combinations of the elements in G1, . . . , Gs is an Rη-sequence.

The next corollary, as remarked in [2], follows immediately by taking ηB(n, d) to be the
maximum of ηB(δ) over all dimension sequences with at most d entries and sum of entries at
most n.

Corollary 2.3 (Ananyan-Hochster [2]). There is an ascending function ηB(n, d), independent of
K and N , such that for all polynomial rings R = K[x1, . . . , xN ] over an algebraically closed field
K and all graded vector subspaces V of R of dimension at most n whose homogeneous elements
have positive degree at most d, the elements of V are contained in a subring K[G1, . . . , GB],
where B ≤ ηB(n, d) and G1, . . . , GB is an Rη-sequence of forms of degree at most d.

We next introduce notations that are needed for the proof of Lemma 3.2 and Lemma 3.3.
For a finitely generated graded R-module M , let βij(M) be the graded Betti numbers of M
and βi(M) =

∑
j βij(M) be the i-th Betti number of M . The Castelnuovo-Mumford regularity

of M is defined as reg(M) =maxi,j{j − i : βij(M) 6= 0}.
Let J be a monomial ideal. We say J is strongly stable if for each monomial u of J , xi|u

implies xju/xi ∈ I for each j < i. Let G(J) be the set of minimal monomial generators of J and
D(J) be the largest degree of monomials in G(J). If u is a monomial, let m(u) := max{i : xi|u}.
By the Eliahou-Kervaire resolution in [14], if J is strongly stable then βi(J) =

∑
u∈G(J)

(
m(u)−1

i

)
.

Let I be a monomial ideal in K[x1, . . . , xN ] where K is an infinite field, we may assume I
is generated by monic monomials, if K ′ is any other field then let IK′ be the ideal generated
by the image of these monomials in K ′[x1, . . . , xN ]. Let ginrlex(I) be the generic initial ideal of
I with respect to the degree reverse lexicographical order. The zero-generic initial ideal of I
with respect to the degree reverse lexicographical order is defined to be

Gin0(I) := (ginrlex((ginrlex(I))Q))K .

The zero-generic initial ideal is explored in more details in [7]. We need this notion in §3 to
treat the positive characteristic cases. Notice that in characteristic 0, the zero-generic initial
ideal is equal to the usual generic initial ideal.

3. Procedures to realize the bound via a recursive algorithm

We start this section by constructing a bound, denoted D(k, d) in [2], for the number of
generators of a minimal prime of an ideal generated by a regular sequence of k or fewer forms of
degree d. We note that this bound is independent of the number of variables in the polynomial
ring, which is necessary for our purpose. The following lemma, see [9, Theorem 27], tells us
that the above minimal prime can be written as the ideal of the regular sequence colon by a
form with bounded degree, which is key to the proof of Lemma 3.2.

Lemma 3.1 (Chardin [9]). Let P ⊂ K[x1, . . . , xN ] be a minimal prime of an ideal generated by
a homogeneous regular sequence f1, . . . , fk of degrees d1, . . . , dk. There exists a form f of degree
at most d1 + · · ·+ dk − k such that

P = (f1, . . . , fk) : (f).

The next two lemmas justify the fact that we can choose D(k, d) to be (2d)2
1B(k,d)−1

. Assuming
the number of variables is known, we show in Lemma 3.2 how to bound the minimal number
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of generators of a particular kind of colon ideals as in Lemma 3.1. In pursuance of an optimal
bound, we extensively apply results and proofs of [6] and [7]. For an alternate way to obtain
a value for D(k, d), we refer the reader to Remark 3.4, which could still be used to construct
explicit but larger bounds for ηB(δ).

Lemma 3.2. Let I ⊂ K[x1, . . . , xB+1] be an ideal generated by a regular sequence of c forms
of degree at most d, and f be a form of degree at most cd − c. Then the minimal number of
generators of I : (f) is bounded by

β0(I : (f)) ≤ B(d+ 1)(2d)
B∏
i=3

((d2 + 2d− 1)2
i−3

+ 1) + 1 ≤ (2d)2
B−1

,

where the last inequality holds if we further assume B ≥ 4, or B ≥ 3 and d ≥ 3.

Proof. If c = 1 then β0(I : (f)) = 1, so assume c ≥ 2. After a faithfully flat base change,
we may assume K is infinite. Denote R := K[x1, . . . , xB+1] and let f1, . . . , fc be the regular
sequence with deg(fi) ≤ d. Consider the exact sequence

0→ R/(I : (f))
f−−→ R/I −→ R/(I + (f))→ 0.

Since c ≤ β0(I + (f)) ≤ c + 1, using the long exact sequence of TorRi (−, K) induced from the
above short exact sequence, we get β0(I : (f)) ≤ β1(I + (f)) + 1.

With the notations of Section 2, let J := Gin0(I + (f)). Denote R[i] := K[x1, . . . , xi].
Let (I + (f))〈i〉 denote its image in R/(lB+1, . . . , li+1) ∼= R[i] where lB+1, . . . , li+1 are general
linear forms, let J[i] denote J ∩ R[i]. By [1, Proposition 2.2], J is strongly stable with β1(I +
(f)) ≤ β1(J). So by [14] and [6, Proposition 1.6], β1(J) =

∑
u∈G(J)(m(u) − 1) ≤ B · |G(J)| ≤

B
∏B

i=1(D(J[i]) + 1). Using [7, Theorem 2.20], we can get D(J[i]) ≤ reg((I + (f))〈i〉) for all i.

Notice that reg((I + (f))〈i〉) ≤ id − i + 1 for all i ≤ c, because mid−i+1
〈i〉 ⊆ (I + (f))〈i〉 where

m = (x1, . . . , xB+1).
To bound reg((I + (f))〈i〉) for i ≥ c+ 1, we follow the proof of [6, Theorem 2.4 and Corollary

2.6]. Let λ(M) denote the length of an Artinian module M . Using the same proof of [6,
Theorem 2.4], we can get

reg((I + (f))〈i〉) ≤ max{d, cd− c, reg((I + (f))〈i−1〉)}

+ λ

(
R[c]

(I + (f))〈c〉

) i∏
j=c+2

reg((I + (f))〈j−1〉)

≤ max{d, cd− c, reg((I + (f))〈i−1〉)}+ dc
i−1∏

j=c+1

reg((I + (f))〈j〉).

(3.1)

The last inequality holds since R[c]/(I + (f))〈c〉 is a quotient ring of R[c]/(g1, . . . , gc), where
g1, . . . , gc is the image of f1, . . . , fc in R[c] and is a regular sequence with deg(gi) ≤ d.

Now we use (3.1) recursively to bound reg((I + (f))〈i〉) for i ≥ c + 1. Set B0 := cd − c + 1,
recall that B0 bounds reg((I + (f))〈c〉). Apply 3.1 to (I + (f))〈c+1〉 to get reg((I + (f))〈c+1〉) ≤
cd− c+ 1 + dc =: B1. For j ≥ 2, we set Bj := Bj−1 + dc

∏j−1
k=1Bk ≤ (Bj−1)

2 ≤ (B1)
2j−1

. Hence

for all i ≥ c+ 1, reg((I + (f))〈i〉) ≤ Bi−c ≤ (cd− c+ 1 + dc)2
i−c−1 ≤ (d2 + 2d− 1)2

i−3
, where the

last inequality holds since the second last bound is decreasing as a function of c and c ≥ 2.
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If B ≥ 4, then B ≤ 2B−2. Combining all the previous inequalities, we get

β0(I : (f)) ≤ B(d+ 1)(2d)
B∏
i=3

((d2 + 2d− 1)2
i−3

+ 1) + 1

≤ 2B−2(d+ 1)(2d)
B∏
i=3

(d2 + 2d)2
i−3 ≤ (2d)(2d)

B∏
i=3

(2d2 + 4d)2
i−3

≤ (2d)2
B∏
i=3

(2d)2
i−2

= (2d)2
B−1

.

If B = 3 and d ≥ 3, one easily checks that β0(I : (f)) ≤ 3(d+ 1)(2d)(d2 + 2d) + 1 ≤ (2d)4. �

Lemma 3.3 constructs our value (2d)2
1B(k,d)−1

for the bound D(k, d) by passing to a polynomial
subring with at most 1B(k, d) + 1 many variables first, using Corollary 2.3, then combining the
result of Lemma 3.1 and Lemma 3.2.

Lemma 3.3. Let K be an algebraically closed field, P ⊂ K[x1, . . . , xN ] be a minimal prime
of an ideal generated by a regular sequence of k or fewer forms of degree at most d. Then the
minimal number of generators of P is bounded by

β0(P ) ≤ (2d)2
1B(k,d)−1

.

Proof. Let f1, . . . , fc be the regular sequence with c ≤ k and deg(fi) ≤ d, let I be the ideal it
generates. By Corollary 2.3, there exists a prime sequence G1, . . . , Gs with s ≤ 1B(k, d) such
that f1, . . . , fc ∈ K[G1, . . . , Gs]. Denote R = K[x1, . . . , xN ] and S = K[G1, . . . , Gs]. Then
pdR(R/I) = c ≤ s and pdS(S/P ∩ S) ≤ s. Notice that R is a free and thus faithfully flat
module over S since we can extend G1, . . . , Gs to a maximal regular sequence G1, . . . , GN in R
to get free extensions K[G1, . . . , Gs] ↪−→ K[G1, . . . , GN ] and K[G1, . . . , GN ] ↪−→ K[x1, . . . , xN ].
Consequently we get pdR(R/P ) ≤ s once we have shown P = (P ∩ S)R. By faithfully flatness
f1, . . . , fc ∈ P ∩S remains a regular sequence in S and so c = htP ≥ ht (P ∩S)R = htP ∩S ≥ c.
Now by [2, Corollary 2.9], (P ∩ S)R is a prime ideal, therefore P = (P ∩ S)R.

By 3.1, there exists a form f ∈ R of degree at most cd − c such that P = I : (f). Consider
the exact sequence

0→ R/P
f−−→ R/I −→ R/(I + (f))→ 0. (3.2)

It follows that pdR(R/(I + (f))) ≤ s + 1. Then depthR/(I + (f)) ≥ N − (s + 1) by the
Auslander-Buchsbaum formula. Let ls+2, . . . , lN ∈ R be a sequence of linear forms regular
on R/P , R/(I + (f)), and R/(f1, . . . , fc). Fix a graded isomorphism from R/(ls+2, . . . , lN)
to K[x1, . . . , xs+1], let R denote K[x1, . . . , xs+1] and “ ” denote the image of polynomials or
ideals of R in R. Notice that β0(P ) = β0(P ). Since ls+2, . . . , lN is a regular sequence on
R/(I + (f)), the short exact sequence in (3.2) remains exact after tensoring with R. It follows
that P = I : (f). Notice that f1, . . . , fc is a regular sequence in R, so we can apply Lemma 3.2

to get β0(P ) ≤ (2d)2
1B(k,d)−1

for 1B(k, d) ≥ 4, or 1B(k, d) = 3 and d ≥ 3.

If 1B(k, d) = 2, it is clear that β0(P ) = β0(P ∩S) ≤ 2. If 1B(k, d) = 3 and d = 2, then P is a
minimal prime of an ideal generated by two quadrics. Let e(R/P ) denote the Hilbert-Samuel
multiplicity of R/P with respect ot the maximal ideal (x1, . . . , xN), we have e(R/P ) ≤ 4.
If either P contains a linear form or e(R/P ) = 4, then P is a complete intersection and so
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β0(P ) = 2. Otherwise P contains no linear forms and e(R/P ) = 3 = 1+ht(P ), so we can apply
[13, Theorem 4.2] to see that R/P is Cohen-Macaulay and hence β0(P ) ≤ e(R/P ) = 3. �

Remark 3.4. By using known results, there is a quick and simple way to obtain a worse upper
bound than the one derived from Lemma 3.3. The outline is the following. First one uses the
bound on the degrees of the generators of initial ideals given in [10, Corollary 3.6] and the proof
of [10, Corollary 3.7] to bound the degrees of the generators of P = I : (f). When d ≥ 2, the

bound one gets is (dc(cd−c))2s+1−c ≤ (d2(2d−2))2
1B(k,d)−1

=: D. Hence, by linear independency,

the number of minimal homogeneous generators of P is at most
(1B(k,d)+D

D

)
.

In the proof of Lemma 3.3, notice that we could replace 1B(k, d) by the projective dimension
of R modulo the minimal prime P . The same proof will give us the bound:

Theorem 3.5. Let K be an algebraically closed field, P ⊂ K[x1, . . . , xN ] be a minimal prime
of an ideal generated by a regular sequence of k or fewer forms of degree at most d. Then the
minimal number of generators of P is bounded by

β0(P ) ≤ (2d)2
pd(R/P )−1 ≤ (2d)2

N−1

.

We conclude this section by presenting a recursive formula that computes ηB(δ), where
δ = (δ1, . . . , δd) is a dimension sequence (see Theorem 3.6). The theoretical proof of [2, §4],
which contains an inductive argument on the degree d, can be easily made into an algorithm
once we insert the bound obtained in Lemma 3.3.

Denote ηA(i) = 3B(D(η + 1, i− 1), i− 1) + 1. Then by [2, Proposition 2.6 and Theorem A],

we have ηAi(δ) = ηA(i) + 3(
∑d

j=1 δj − 1).

Section 4 of [2] explains how to obtain ηB from ηA, which we will describe briefly as follows.
Let V be any vector space with dimension sequence δ, if for all such V , the strength of every
nonzero element of Vi is at least ηA(δ), then let ηB(δ) =

∑d
i=1 δi. Otherwise there exists a

V and a degree i for which an element of Vi has an ηAi(δ)-collapse. In this case set ηB(δ) =
maxδ′{ηB(δ′)}, where δ′ run through all dimension sequences derived from δ by keeping δj
unchanged for j > i, decreasing δi by 1, and increasing the δj’s for j < i by a total of 2 · ηAd(δ).
Notice that if d = 1, ηB((δ1)) = δ1 trivially satisfies 2.2.

By considering the worst case scenario in the algorithm described above, we may define ηB
recursively as

ηB(δ1, . . . , δd) =
η
B(δ1, . . . , δd−2, δd−1 + 2 ηAd(δ), δd − 1)

= ηB(δ1, . . . , δd−2, ai, δd − i),
where ai satisfies the recurrence relation a0 = δd−1,

ai = ai−1 + 2(ηA(d) + 3(ai−1 + δ1 + · · ·+ δd−2 + δd − (i− 1)− 1))

= 7ai−1 + 2 ηA(d) + 6(δ1 + · · ·+ δd−2 + δd)− 6i.

Notice that ai = 7i(δ1 + · · · + δd + 1
3
ηA(d) − 7

6
) + i − (δ1 + · · · + δd−2 + δd) − 1

3
ηA(d) + 7

6
is

a solution of the recurrence relation. Our goal is to bring down all the degree d elements to
degree d− 1, and so we compute aδd to get

ηB(δ1, . . . , δd) = ηB(δ1, . . . , δd−2, aδd , 0) =
η

B(δ1, . . . , δd−2, 7
δd(δ1 + · · ·+ δd +

1

3
ηA(d)− 7

6
)− (δ1 + · · ·+ δd−2)−

1

3
ηA(d) +

7

6
).
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With our recursive definition we have ηB(n, d) = ηB(δ) where δ = (0, · · · , 0, n) has d entries.
The algorithm finishes by iterating the above process until all forms are in degree 1. We

summarize the above discussion into the following theorem.

Theorem 3.6. Under the setting of Theorem 2.2, we have the bound ηB(δ) = bd−1 where bd−1
satisfies the following recurrence relation:

bi = 7bi−1

(
1

3
3B(D(η + 1, d− i), d− i) + bi−1 + δ1 + · · ·+ δd−i −

5

6

)
− 1

3
3B(D(η + 1, d− i), d− i)− (δ1 + · · ·+ δd−i−1) +

5

6
.

with b0 = δd, D(η + 1, d − i) = [2(d − i)]2
1B(η+1,d−i)−1

if d − i > 1, D(η + 1, 1) = η + 1, and
ηB((δ1)) = δ1.

4. Estimate of the small subalgebra bound

In this section, we give an estimate for the bound ηB(n, d) in Corollary 2.3. Notice that this
also estimates the bound ηB(δ) in Theorem 2.2 since if δ is a dimension sequence with d entries
whose sum equals to n, then ηB(δ) ≤ ηB(n, d).

Unfortunately a formula that represents the actual value of the recursion described in Theo-
rem 3.6 will be a very complicated, hard to read formula that behaves like a power tower. We
decided, for the sake of clarity, to push all the exponents up in order to obtain a reasonable
upper bound written as a power tower with linear top exponent depending on d, n, η. We focus
not on the optimal value of the top exponent, but on the height of power tower.

We denote a power tower with base a, height n, and top exponent x by

Notation 4.1. Let expna(x) = aa
··
ax

with n a’s.

The result of our estimate, whose details are at the end of the section, is as follows.

Proposition 4.2. Assume d ≥ 4, then ηB(n, d) defined in Corollary 2.3 can be bounded by

ηB(n, d) ≤ exp
1
6
d3+ 11

6
d−4

7 (d+ n+ η + 2).

In particular when η = 1, 1B(n, d) gives a bound for the projective dimension.

Theorem 4.3. If I is a homogeneous ideal in a polynomial ring R generated by n forms with
maximum degree d ≥ 4, then pd(R/I) can be bounded by a power tower with base 7, height
1
6
d3 + 11

6
d− 4, and top exponent d+ n+ 3.

For the rest of this section, we compute the estimate in 4.2. During the computations, we
will push up the exponents repeatedly, by which we mean:

If a ≥ 2, x, y, z ≥ 0, and x+ y ≤ ay
′
, then aya

z

+ x ≤ aya
z+x ≤ a(x+y)a

z ≤ aa
y′az = aa

y′+z
.

For the computations below, we work with the recurrence in Theorem 3.6. Recall that
ηB(n, d) = ηB(δ) where δ = (0, · · · , 0, n) has d entries, and ηB(n, d) = bd−1 with the bi’s defined
in Theorem 3.6. We assume d ≥ 4.
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First we simplify the bi’s in Theorem 3.6.

bi = 7bi−1

(
1

3
3B(D(η + 1, d− i), d− i) + bi−1 −

5

6

)
− 1

3
3B(D(η + 1, d− i), d− i) +

5

6

≤ 7bi−1(
1

3
3B(D(η + 1, d− i), d− i) + bi−1)

≤ 72bi−1(3B(D(η + 1, d− i), d− i)).

(4.1)

We push up the exponents appearing in ηB(n, d) = bd−1.

Notice that 2 3B(D(η + 1, d− i), d− i) ≤ 7
3B(D(η+1,d−i),d−i) and 3B(D(η + 1, d− 1), d− 1) ≥

3B(D(η + 1, d− i), d− i) for all i ≥ 1.

ηB(n, d) = bd−1 ≤ 3B(D(η + 1, 1), 1)72 3B(D(η+1,2),2)7·
··
2 3B(D(η+1,d−1),d−1)72n

≤ (η + 1)expd−17 (3B(D(η + 1, 2), 2) + · · ·+ 3B(D(η + 1, d− 1), d− 1) + 2n)

≤ (η + 1)expd−17 ((d− 2) 3B(D(η + 1, d− 1), d− 1) + 2n).
(4.2)

Apply (4.2) to 3B(D(η + 1, d− 1), d− 1), we get:

3B(D(η + 1, d− 1), d− 1) ≤ 4expd−27 ((d− 3) 3B(D(4, d− 2), d− 2) + 2D(η + 1, d− 1)) (4.3)

Apply (4.2) to 3B(D(4, d− 2), d− 2), 3B(D(4, d− 3), d− 3), . . . , 3B(D(4, 2), 2) and push up
all the exponents, we get:

3B(D(4, d− 2), d− 2) ≤ 4expd−37 ((d− 4) 3B(D(4, d− 3), d− 3) + 2D(4, d− 2))

≤ expd−37 ((d− 4) 3B(D(4, d− 3), d− 3) + 2D(4, d− 2) + 1)

≤ exp
∑d−3
j=1 j

7 (
d−4∑
j=2

j + 2(d− 3)D(4, d− 2) + d− 3)

= exp
d2−5d+6

2
7 (2(d− 3)D(4, d− 2) +

1

2
d2 − 5

2
d+ 2).

(4.4)

Now we combine the above inequalities. The first inequality below follows from (4.2), the
second from (4.3), the third from 4(d− 2) ≤ 7d−2, the fourth from (4.4) and (d− 3) + (d− 2) ≤
7

1
2
d−1 .

ηB(n, d) ≤ (η + 1)expd−17 ((d− 2) 3B(D(η + 1, d− 1), d− 1) + 2n)

≤ (η + 1)expd−17 ((d− 2)4expd−27 ((d− 3) 3B(D(4, d− 2), d− 2) + 2D(η + 1, d− 1) + n))

≤ (η + 1)expd−1+d−27 ((d− 3) 3B(D(4, d− 2), d− 2) + 2D(η + 1, d− 1) + n+ (d− 2))

≤ (η + 1)exp
2d−3+ d2−5d+6

2
7 (2(d− 3)D(4, d− 2) +

1

2
d2 − 5

2
d+ 2 +D(η + 1, d− 1) + n+

1

2
d− 1)

= (η + 1)exp
d2−d

2
7 (2(d− 3)D(4, d− 2) +D(η + 1, d− 1) + n+

1

2
d2 − 2d+ 1).

(4.5)
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In particular when η = 1:

1B(n, d) ≤ exp
d2−d

2
7 (2(d− 3)D(4, d− 2) +D(2, d− 1) + n+

1

2
d2 − 2d+ 2)

≤ exp
d2−d

2
7 ((2d− 5)D(4, d− 1) + n+

1

2
d2 − 2d+ 2).

We bound D(η + 1, d− 1) as:

D(η + 1, d− 1) = [2(d− 1)]2
1B(η+1,d−1)−1

≤ [7d−1]7
exp

d2−3d+2
2

7 ((2d−7)D(4,d−2)+η+1
2 d

2−3d+11
2 )

≤ exp
d2−3d+6

2
7 ((2d− 7)D(4, d− 2) + η +

1

2
d2 − 2d+

9

2
).

(4.6)

To estimate D(4, d− 2), notice that for 3 ≤ j ≤ d− 2, we have:

D(4, j) = [8j]2
1B(4,j)−1

≤ [7j]7
exp

j2−j
2

7 ((2j−5)D(4,j−1)+4+1
2 j

2−2j+2)

≤ exp
j2−j+4

2
7 ((2j − 5)D(4, j − 1) +

1

2
j2 − j + 6).

(4.7)

And when j = 2, we get the bound below. Notice that we can use the first line of (4.1) to
bound 1B(4, 2) = 74(1

3
· 2 + 4− 5

6
)− 1

3
· 2 + 5

6
≤ 4 · 74.

D(4, 2) = [4]2
1B(4,2)−1 ≤ [4]2

4·74−1 ≤ exp3
7(5).

Apply (4.7) recursively, use the inequality
∑d−2

j=3(2j − 5) + (1
2
j2 − j + 6) ≤ exp2

7(
1
2
d− 2), and

push up the exponents to see:

D(4, d− 2) ≤ exp
∑d−2
j=2

j2−j+4
2

7 (
1

2
d− 2 + 5) = exp

d3−6d2+23d−42
6

7 (
1

2
d+ 3). (4.8)

We combine the previous inequalities to get our final bound below. Notice that the first
inequality follows from (4.5), the second from (4.6), the fourth from (4.8) and the inequality
d2 − 3d+ 7

2
+ (2d− 6) ≤ exp2

7(
1
2
d− 1).

ηB(n, d) ≤ exp
d2−d

2
7 (2(d− 3)D(4, d− 2) +D(η + 1, d− 1) + n+

1

2
d2 − 2d+ 2 + η)

≤ expd
2−2d+3

7 (d− 3 + (2d− 6)D(4, d− 2) + η +
1

2
d2 − 2d+

9

2

+ n+
1

2
d2 − 2d+ 2 + η)

= expd
2−2d+3

7 ((2d− 6)D(4, d− 2) + 2η + n+ d2 − 3d+
7

2
)

≤ exp
d2−2d+3+ d3−6d2+23d−42

6
7 (

1

2
d+ 3 + η + n+

1

2
d− 1)

= exp
1
6
d3+ 11

6
d−4

7 (d+ 2 + n+ η).

In particular when η = 1, we get 1B(n, d) ≤ exp
1
6
d3+ 11

6
d−4

7 (d+ n+ 3).
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[3] Jesse Beder, Jason McCullough, Luis Núñez-Betancourt, Alexandra Seceleanu, Bart Snapp, and Branden
Stone, Ideals with larger projective dimension and regularity, Journal of Symbolic Computation 46 (2011),
no. 10, 1105–1113. 1

[4] Winfried Bruns, “jede” endliche freie auflösung ist freie auflösung eines von drei elementen erzeugten ideals,
Journal of Algebra 39 (1976), no. 2, 429–439. 1

[5] Lindsay Burch, A note on the homology of ideals generated by three elements in local rings, Mathematical
Proceedings of the Cambridge Philosophical Society 64 (1968), no. 4, 949–952. 1

[6] G. Caviglia and E. Sbarra, Characteristic-free bounds for the Castelnuovo-Mumford regularity, Compositio
Mathematica 141 (2005), no. 6, 1365–1373. 4

[7] , Zero-generic intial ideals, manuscripta math. 148 (2015), 507–520. 3, 4
[8] Giulio Caviglia and Manoj Kummini, Some ideals with large projective dimension, Proceedings of the

American Mathematical Society 136 (2008), no. 2, 505–509. 1
[9] M. Chardin, Applications of Some Properties of the Canonical Module in Computational Projective Alge-

braic Geometry, Journal of Symbolic Computation 29 (2000), no. 4, 527–544. 3
[10] M. Chardin and G. Moreno-Socias, Regularity of Lex-Segment Ideals: Some Closed Formulas and Applica-

tions, Proceedings of the American Mathematical Society 131 (2003), 1093–1102. 6
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